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• Introduction to CEvNS

• Motivation to detect CEvNS signal

• Aspects related to the COHERENT experiment

• Future prospects

Outline



• First proposed in 1974 by Daniel Freedman “Coherent effects of a 
weak neutral current” -- [“Our suggestion may be an act of hubris, 
because the inevitable constraints of interaction rate, resolution and 
background pose grave experimental difficulties.” ]

• Late 1970s: CEvNS considered in Supernova processes

• 1980s: Possible designs for detectors

• Search for black matter  detectors usable for CEvNS

• 2017: (finally) First detection of CEvNS signal

Timeline



Basic Principle

Coherent scattering: 

Neutrino energy ~ <50 MeV

(momentum transferred)*(size of nucleus) << 1

Nucleons not “resolved” by the neutrino

Signal of CEvNS:

recoil of the nucleus – 
extremely small

difficult to detect (few keV)



CEvNS Cross Section

where,    Fermi constant
 scattering angle
 weak nuclear charge
 form factor at momentum transfer,  ; with,

𝑍 (4 𝑠𝑖𝑛2𝛩𝑤−1 )+𝑁

: weak nuclear charge
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• Weak mixing angle,                 ( enhancement of the cross-section) 

• Large cross-section compared to other neutrino interactions  smaller detectors 
      

𝑑𝜎
𝑑 (cos  𝜃)

=
𝐺 𝑓
2

8𝜋 [𝑍 (4 𝑠𝑖𝑛2𝛩𝑤−1)+𝑁 ]2𝐸2 (1+𝑐𝑜𝑠  𝜃 )One can analyze from 
this expression:

Integrating out for  and 
expressing it per kilogram 
of the detector

𝜎 ≈2 .5×10− 18
𝑁2

𝐴
¿

Phys. Rev. D 30(11), Principles and applications of a 
neutral-current detector for neutrino physics and astronomy, 
1984

One find that for flux , we obtain a rate of 30 CEvNS/hour for only 1 kg of Pb



Comparison of Cross Sections for neutrino interactions



Choice of Target Nucleus 

Cross section:

Recoil energy:

 High A-nuclei: large cross section but lower recoil   
energy 





Motivation

• CEvNS is an important process in supernovae

• Sterile neutrino oscillations

• Dark Matter searches

• Nuclear physics

      - neutron form factor

• Test for SM

      - weak mixing angle

 Probing physics beyond the SM



Core Collapse Supernovae 

• 99% of gravitational binding energy goes into neutrinos of all flavours 

• Energy of a few 10s of MeV

• Large cross section is needed for information 

• 0.1 s after beginning of core collapse: CEvNS processes in core trap 

Neutrinos 

 Knowledge important for SN calculations 



Neutron Form Factor



Dark Matter Searches: Neutrino Floor



Constraints On NSI



Neutrino Sources (used as of now)

         Flux Energy   Flavour

Reactors  Few MeVs electron

+ high flux
- low energy 
- continous 
- lower cross section

Stopped Pion 0-50 MeV muon 

+ higher energy 
+ pulsed 
+ higher cross section
- lower flux
- neutron background 



Reactor Stopped Pion



CEvNS Detectors 

• Scintillation Detectors

- Nuclear recoils  keV, very hard for sub-keV

- Inorganic crystals: Csl, NaI,…

• Phonon Detectors (thermal)

- Suitable for nuclear recoils below 100 eV

- Ge, Si, ..

• Ionization

- Nuclear recoils  keV, hard for sub-keV

- GePPCs, Si CCDs, Ar/Xe TPCs

• Bubble chambers

- not possible for sub-keV nuclear recoils 

- Superheated liquids



Spallation Neutron 
Source (SNS), Oak 
Ridge Laboratory, USA

 High energy protons hit mercury target

 Stopped pion decay 

 “neutrino alley”

Power: 1.4 MW
Proton energy: 1 GeV
Pulse width: 340 ns FWHM
Repetition rate: 60 Hz

The COHERENT collaboration:

80 researchers, 20 institutions, 4 countries



Neutrino Production

POT – Protons-On-TargetDAR – Decayed-At-Rest

D. Akimov et al. Science 2017;357:1123-1126





“Neutrino Alley”

D. Akimov et al. Science 2017;357:1123-1126
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Advantages of CsI[Na] detector

High mass of both recoiling 
species, Cs and I

It’s an inorganic scintillator detector



Advantages of CsI[Na] detector

Simplified response as 
nearly identical species



Advantages of CsI[Na] detector

 High mass of both recoiling species, Cs and I

 Simplified response as nearly identical species

 ~7 keV threshold with conventional bialkali PMT

 Convenient signal for background neutron monitoring

 Crystals are naturally low in internal radioactivity

 Shorter duration of the afterglow (when compared to CsI[Tl])

 High light yield (twice yield of photoelectrons against CsI[Tl])



Characterization + Detector and Shielding Design CsI[Na] 
Background estimates & reduction (neutrons, NIN, cosmic rays)

Need to estimate Quenching factor (crucial!)

    [Quenching factor of 4.5% was used]

Finally: 10 photoelectrons correspond to 12 keV(nuclear recoil)

 Crystal samples screened for radioactive contaminants

    [presence of 40K, 134Cs, 137Cs – responsible for internal low-energy background in this scintillator]

 Crystals wrapped in PTFE expanded-membrane reflector & innermost 7.5 cm HDPE

 Crystals encapsulated in electroformed OFHC Copper cans

 Ultra-low background (ULB) lead present around the detector (within 1 inch)

 Shielding against thermal neutrons – borated silicone, cadmium sheet

 7 plastic scintillator muon veto panel



1. 3 inches of low-background HDPE

2. 2 in. of low-background lead

3. 4 in. of contemporary lead

4. 2 in. thick muon veto

5. Al Bosch-Rexroth extrusions

6. Al tanks filled with water, water-bricks

Chapter 5: First Observation of Coherent Elastic Neutrino-
Nucleus Scattering, Bjorn Scholz, Springer - 2018

Schematic of the CsI[Na] shielding at the SNS
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• Left: CsI[Na] Crystal and the PMT

• Center: The unfinished lead castle

• Right: muon veto panels



CsI[Na] Experiment (14.57 kg) 

D. Akimov et al. Science 2017;357:1123-1126

6.7 CL

First observation of CevNS by COHERENT in 2017. 43 years after its prediction!



D. Akimov et. al, Supplementary Materials for Observation of 
coherent elastic neutrino-nucleus scattering, Science 2017



D. Akimov et. al, Supplementary Materials for Observation of 
coherent elastic neutrino-nucleus scattering, Science 2017



Future 

• Many current and future experiments 

• Upgrades for COHERENT experiment at SNS planned 

• Improving detector designs to detect eV nuclear recoils (will have 

a positive impact in the searches for dark matter)

• Important role in search for new answers and BSM physics 





Introduction
• What is meant by coherent scattering?
• How does the cross-section for such a process vary?
• How do you detect such scattering?

Motivation
• Probe for Beyond the SM physics
• Important process in supernovae
• Novel detectors – progress in Dark Matter searches

The 
COHERENT 

experiment

• Neutrino source at the SNS, Oak Ridge Laboratory
• Detector design (CsI[Na])
• First detection of such a scattering (CEvNS)

Future 
prospects

• What other collaborations for detecting this 
scattering?

• Dark Matter searches

What did we looked at? For what it’s worth…
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