Experimental Astroparticle Physics Seminar

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

Hannah Limberg || Romal Kumar 2021-01-07

<u>Outline</u>

- Introduction to CEvNS
- Motivation to detect CEvNS signal
- Aspects related to the COHERENT experiment
- Future prospects

Timeline

- First proposed in 1974 by Daniel Freedman "Coherent effects of a weak neutral current" -- ["Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution and background pose grave experimental difficulties."]
- Late 1970s: CEvNS considered in Supernova processes
- 1980s: Possible designs for detectors
- Search for black matter \rightarrow detectors usable for CEvNS
- 2017: (finally) First detection of CEvNS signal

Coherent scattering:

Neutrino energy ~ <50 MeV

(momentum transferred)*(size of nucleus) << 1

Nucleons not "resolved" by the neutrino

Signal of CEvNS: recoil of the nucleus – extremely small difficult to detect (few keV)

CEvNS Cross Section

where, Fermi constant scattering angle weak nuclear charge form factor at momentum transfer, ; with,

: weak nuclear charge $Z(4 \sin^2 \Theta_w - 1) + N$

arXiv:1110.3536v3

One can analyze from
this expression:
$$\frac{d\sigma}{d(\cos \theta)} = \frac{G_f^2}{8\pi} [Z(4\sin^2 \Theta_w - 1) + N]^2 E^2(1 + \cos \theta)$$

• Weak mixing angle, \rightarrow (enhancement of the cross-section)

• Large cross-section compared to other neutrino interactions \rightarrow smaller detectors

Integrating out for and
expressing it per kilogram
of the detector
$$\sigma \approx 2.5 \times 10^{-18} \frac{N^2}{A}$$

 A Phys. Rev. D 30(11), Principles and applications of a
neutral-current detector for neutrino physics and astronomy,
1984

One find that for flux , we obtain a rate of 30 CEvNS/hour for only **1 kg** of Pb

Comparison of Cross Sections for neutrino interactions

Cross section:

Recoil energy:

→ High A-nuclei: large cross section but lower recoil energy

Motivation

- CEvNS is an important process in supernovae
- Sterile neutrino oscillations
- Dark Matter searches
- Nuclear physics
 - neutron form factor
- Test for SM
 - weak mixing angle
- Probing physics beyond the SM

Core Collapse Supernovae

- 99% of gravitational binding energy goes into neutrinos of <u>all</u> flavours
- Energy of a few 10s of MeV
- Large cross section is needed for information
- 0.1 s after beginning of core collapse: CEvNS processes in core trap Neutrinos
 - \rightarrow Knowledge important for SN calculations

Neutron Form Factor

Dark Matter Searches: Neutrino Floor

Constraints On NSI

Neutrino Sources (used as of now)

	Flux	Energy	Flavour	
Reactors		Few MeVs	electron	+ high flux - low energy - continous - lower cross section
Stopped Pion		0-50 MeV	muon	 + higher energy + pulsed + higher cross section - lower flux - neutron background

CEvNS Detectors

- Scintillation Detectors
 - Nuclear recoils keV, very hard for sub-keV
 - Inorganic crystals: Csl, Nal,...
- Phonon Detectors (thermal)
 - Suitable for nuclear recoils below 100 eV
 - Ge, Si, ..
- Ionization
 - Nuclear recoils keV, hard for sub-keV
 - GePPCs, Si CCDs, Ar/Xe TPCs
- Bubble chambers
 - not possible for sub-keV nuclear recoils
 - Superheated liquids

Spallation Neutron Source (SNS), Oak Ridge Laboratory, USA

- \rightarrow High energy protons hit mercury target
 - \rightarrow Stopped pion decay
 - \rightarrow "neutrino alley"

Power: 1.4 MW Proton energy: 1 GeV Pulse width: 340 ns FWHM Repetition rate: 60 Hz

The COHERENT collaboration: 80 researchers, 20 institutions, 4 countries

Neutrino Production

D. Akimov et al. Science 2017;357:1123-1126

"<u>Neutrino Alley</u>"

Advantages of CsI[Na] detector

It's an inorganic scintillator detector

High mass of both recoiling species, Cs and I

Advantages of CsI[Na] detector

Simplified response as nearly identical species

Advantages of CsI[Na] detector

- High mass of both recoiling species, Cs and I
- Simplified response as nearly identical species
- ~7 keV threshold with conventional bialkali PMT
- Convenient signal for background neutron monitoring
- Crystals are naturally low in internal radioactivity
- Shorter duration of the afterglow (when compared to CsI[TI])
- High light yield (twice yield of photoelectrons against CsI[Tl])

Characterization + Detector and Shielding Design Csl[Na]

Background estimates & reduction (neutrons, NIN, cosmic rays)

•Need to estimate *Quenching factor* (crucial!)

[Quenching factor of 4.5% was used]

•Finally: 10 photoelectrons correspond to 12 keV(nuclear recoil)

• Crystal samples screened for radioactive contaminants

[presence of ⁴⁰K, ¹³⁴Cs, ¹³⁷Cs – responsible for internal low-energy background in this scintillator]

- Crystals wrapped in PTFE expanded-membrane reflector & innermost 7.5 cm HDPE
- Crystals encapsulated in electroformed OFHC Copper cans
- Ultra-low background (ULB) lead present around the detector (within 1 inch)
- Shielding against thermal neutrons borated silicone, cadmium sheet
- 7 plastic scintillator muon veto panel

<u>Schematic of the CsI[Na] shielding at the SNS</u>

Chapter 5: First Observation of Coherent Elastic Neutrino-Nucleus Scattering, Bjorn Scholz, Springer - 2018

- 1. 3 inches of low-background HDPE
- 2. 2 in. of low-background lead
- 3.4 in. of contemporary lead
- 4. 2 in. thick muon veto
- 5. Al Bosch-Rexroth extrusions
- 6. Al tanks filled with water, water-bricks

· Left: CsI[Na] Crystal and the PMT

- · Center: The unfinished lead castle
- Right: muon veto panels

Csl[Na] Experiment (14.57 kg)

First observation of CevNS by COHERENT in 2017. 43 years after its prediction!

D. Akimov *et. al*, Supplementary Materials for Observation of coherent elastic neutrino-nucleus scattering, Science 2017

D. Akimov *et. al*, Supplementary Materials for Observation of coherent elastic neutrino-nucleus scattering, Science 2017

- Many current and future experiments
- Upgrades for COHERENT experiment at SNS planned
- Improving detector designs to detect eV nuclear recoils (will have a positive impact in the searches for dark matter)
- Important role in search for new answers and BSM physics

Experiment	$ au_{ ext{th}}$	Baseline (m)	Target	Mass (kg)	Technology	Source
COHERENT [93]	6.5 keV	19.3	Csl[Na]	14.57	Scintillating crystal	π-DAR SNS
	5 keV	22	Ge	10	HPGe PPC	
	20 keV	29	LAr	2×10^{3}	Single phase	
	13 keV	28	Nal[TI]	185*/3388	Scintillating	
					crystal	
CCM [94]	10–20 keV	20–40	LAr	10 ⁴	Scintillation	π -DAR
						Lujan
CONUS [95]	300 eV	17	Ge	4	HPGe	NPP 3.9 GW
MINER [47]	10 eV	1	Ge/Si	30	cryogenic	NPP 1 MW
CONNIE [96]	28 eV	30	Si	1	Si CCDs	NPP 3.8 GW
Ricochet [50]	50–100 eV	<10	Ge/Zn	10	Ge, Zn bolometers	NPP 8.54 GW
NUCLEUS [97]	20 eV	<10	$CaWO_4$ 10 ⁻³ Al_2O_3		Cryogenic CaWO ₄	
				Al ₂ O ₃ calorimeter	NPP 8.54 GW	
					array	
RED100 [98]	500 eV	19	Xe	100	LXe dual phase	NPP 3 GW
vGEN	350 eV	10	Ge	4×0.4	Ge PPC	NPP 3 GW
TEXONO [99]	150–200 eV	28	Ge	1	p-PCGe	NPP 2 × 2.9 GW

What did we looked at? For what it's worth...

